Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38540780

RESUMO

Lipid rafts, specialised microdomains within cell membranes, play a central role in orchestrating various aspects of neurodevelopment, ranging from neural differentiation to the formation of functional neuronal networks. This review focuses on the multifaceted involvement of lipid rafts in key neurodevelopmental processes, including neural differentiation, synaptogenesis and myelination. Through the spatial organisation of signalling components, lipid rafts facilitate precise signalling events that determine neural fate during embryonic development and in adulthood. The evolutionary conservation of lipid rafts underscores their fundamental importance for the structural and functional complexity of the nervous system in all species. Furthermore, there is increasing evidence that environmental factors can modulate the composition and function of lipid rafts and influence neurodevelopmental processes. Understanding the intricate interplay between lipid rafts and neurodevelopment not only sheds light on the fundamental mechanisms governing brain development but also has implications for therapeutic strategies aimed at cultivating neuronal networks and addressing neurodevelopmental disorders.


Assuntos
Neurônios , Transdução de Sinais , Membrana Celular/metabolismo , Transdução de Sinais/fisiologia , Encéfalo , Microdomínios da Membrana/química
2.
Biomolecules ; 14(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38397393

RESUMO

The purpose of this review is to succinctly examine the methodologies used in lipid raft research in the brain and to highlight the drawbacks of some investigative approaches. Lipid rafts are biochemically and biophysically different from the bulk membrane. A specific lipid environment within membrane domains provides a harbor for distinct raftophilic proteins, all of which in concert create a specialized platform orchestrating various cellular processes. Studying lipid rafts has proved to be arduous due to their elusive nature, mobility, and constant dynamic reorganization to meet the cellular needs. Studying neuronal lipid rafts is particularly cumbersome due to the immensely complex regional molecular architecture of the central nervous system. Biochemical fractionation, performed with or without detergents, is still the most widely used method to isolate lipid rafts. However, the differences in solubilization when various detergents are used has exposed a dire need to find more reliable methods to study particular rafts. Biochemical methods need to be complemented with other approaches such as live-cell microscopy, imaging mass spectrometry, and the development of specific non-invasive fluorescent probes to obtain a more complete image of raft dynamics and to study the spatio-temporal expression of rafts in live cells.


Assuntos
Detergentes , Microdomínios da Membrana , Microdomínios da Membrana/química , Encéfalo
3.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139047

RESUMO

Gangliosides are major glycans on vertebrate nerve cells, and their metabolic disruption results in congenital disorders with marked cognitive and motor deficits. The sialyltransferase gene St3gal2 is responsible for terminal sialylation of two prominent brain gangliosides in mammals, GD1a and GT1b. In this study, we analyzed the expression of calcium-binding interneurons in primary sensory (somatic, visual, and auditory) and motor areas of the neocortex, hippocampus, and striatum of St3gal2-null mice as well as St3gal3-null and St3gal2/3-double null. Immunohistochemistry with highly specific primary antibodies for GABA, parvalbumin, calretinin, and calbindin were used for interneuron detection. St3gal2-null mice had decreased expression of all three analyzed types of calcium-binding interneurons in all analyzed regions of the neocortex. These results implicate gangliosides GD1a and GT1b in the process of interneuron migration and maturation.


Assuntos
Cálcio , Neocórtex , Sialiltransferases , beta-Galactosídeo alfa-2,3-Sialiltransferase , Animais , Camundongos , Calbindina 2/metabolismo , Calbindinas/metabolismo , Cálcio/metabolismo , Gangliosídeos/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Mamíferos/metabolismo , Camundongos Knockout , Mutação , Neocórtex/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , beta-Galactosídeo alfa-2,3-Sialiltransferase/genética , beta-Galactosídeo alfa-2,3-Sialiltransferase/metabolismo
4.
Front Endocrinol (Lausanne) ; 14: 1181064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929025

RESUMO

Aim/Introduction: The study aimed to determine the effectiveness of early antidiabetic therapy in reversing metabolic changes caused by high-fat and high-sucrose diet (HFHSD) in both sexes. Methods: Elderly Sprague-Dawley rats, 45 weeks old, were randomized into four groups: a control group fed on the standard diet (STD), one group fed the HFHSD, and two groups fed the HFHSD along with long-term treatment of either metformin (HFHSD+M) or liraglutide (HFHSD+L). Antidiabetic treatment started 5 weeks after the introduction of the diet and lasted 13 weeks until the animals were 64 weeks old. Results: Unexpectedly, HFHSD-fed animals did not gain weight but underwent significant metabolic changes. Both antidiabetic treatments produced sex-specific effects, but neither prevented the onset of prediabetes nor diabetes. Conclusion: Liraglutide vested benefits to liver and skeletal muscle tissue in males but induced signs of insulin resistance in females.


Assuntos
Liraglutida , Síndrome Metabólica , Metformina , Animais , Feminino , Masculino , Ratos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Liraglutida/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/etiologia , Metformina/uso terapêutico , Ratos Sprague-Dawley , Sacarose/efeitos adversos , Fatores Sexuais
5.
Eur J Neurosci ; 55(9-10): 2474-2490, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33909305

RESUMO

Chronic stress produces long-term metabolic changes throughout the superfamily of nuclear receptors, potentially causing various pathologies. Sex hormones modulate the stress response and generate a sex-specific age-dependent metabolic imprint, especially distinct in the reproductive senescence of females. We monitored chronic stress recovery in two age groups of female Sprague Dawley rats to determine whether stress and/or aging structurally changed the glycolipid microenvironment, a milieu playing an important role in cognitive functions. Old females experienced memory impairment even at basal conditions, which was additionally amplified by stress. On the other hand, the memory of young females was not disrupted. Stress recovery was followed by a microglial decrease and an increase in astrocyte count in the hippocampal immune system. Since dysfunction of the brain immune system could contribute to disturbed synaptogenesis, we analyzed neuroplastin expression and the lipid environment. Neuroplastin microenvironments were explored by analyzing immunofluorescent stainings using a newly developed Python script method. Stress reorganized glycolipid microenvironment in the Cornu Ammonis 1 (CA1) and dentate gyrus (DG) hippocampal regions of old females but in a very different fashion, thus affecting neuroplasticity. The postulation of four possible neuroplastin environments pointed to the GD1a ganglioside enrichment during reproductive senescence of stressed females, as well as its high dispersion in both regions and to GD1a and GM1 loss in the CA1 region. A specific lipid environment might influence neuroplastin functionality and underlie synaptic dysfunction triggered by a combination of aging and chronic stress.


Assuntos
Envelhecimento , Hipocampo , Animais , Feminino , Glicolipídeos/metabolismo , Hipocampo/fisiologia , Lipídeos , Masculino , Ratos , Ratos Sprague-Dawley
6.
MethodsX ; 8: 101312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434832

RESUMO

Iron nanoparticles are used as a targeted drug delivery system. The nanocarrier itself can be genotoxic, trigger oxidative stress or cell death. Therefore, we developed an AC/DC magnetic syringe for injecting, stimulating drug release and safe removing of the nanocarrier. Alongside we optimized the method for nanoparticles' drug release kinetics and testing cytotoxicity in vitro.•This paper presents detailed instructions for construction of AC/DC magnetic syringe device for stimulated drug release, injection and ejection of magnetic nanoparticles; nanoparticles preparation; adsorbing methylene blue on nanoparticles; determination of drug release kinetics from nanocarriers on the example of methylene blue•Gomori´s Prussian blue reaction for differentiated SH-SY5Y human neuroblastoma cell line; MTT viability assay optimized for differentiated SH-SY5Y human neuroblastoma cell line and antioxidant enzymes activities assay and lipid peroxidation methods are optimized for cell analyses cell cultivation for nanoparticles cytotoxicity testing in vitro.•Those protocols are the first step toward further testing the effect of nanoparticles in vivo, on brain tissue.

7.
J Hazard Mater ; 409: 124918, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33422751

RESUMO

Continuing our previous research work on a drug delivery system based on combined AC/DC magnetic fields, we have developed a prototype AC/DC magnetic syringe device for stimulation of drug release from drug carriers, with the options of injecting/removing drug carriers. The porous Fe3O4 carrier, in a dose-dependent manner, causes acute oxidative damage and reduces the viability of differentiated SH-SY5Y human neuroblastoma cells, indicating the necessity for its removal once it reaches the therapeutic concentration at the target tissue. The working mechanism of the device consists of three simple steps. First, direct injection of the drug adsorbed on the surface of a carrier via a needle inserted into the targeted area. The second step is stimulation of drug release using a combination of AC magnetic field (a coil magnetised needle with AC current) and permanent magnets (DC magnetic lens outside of the body), and the third step is removal of the drug carriers from the injected area after the completion of drug release by magnetising the tip of the needle with DC current. Removing the drug carriers allows us to avoid possible acute and long term side effects of the drug carriers in the patient's body, as well as any potential response of the body to the drug carriers.


Assuntos
Portadores de Fármacos , Imãs , Liberação Controlada de Fármacos , Humanos , Campos Magnéticos , Magnetismo
8.
Croat Med J ; 57(2): 194-206, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27106360

RESUMO

AIM: To evaluate the changes in the expression level of gonadal steroid, insulin, and leptin receptors in the brain of adult Sprague-Dawley female rats due to ovariectomy and/or chronic stress. METHODS: Sixteen-week-old ovariectomized and non-ovariectomized female Sprague-Dawley rats were divided in two groups and exposed to three 10-day-sessions of sham or chronic stress. After the last stress-session the brains were collected and free-floating immunohistochemical staining was performed using androgen (AR), progesterone (PR), estrogen-ß (ER-ß), insulin (IR-α), and leptin receptor (ObR) antibodies. The level of receptors expression was analyzed in hypothalamic (HTH), cortical (CTX), dopaminergic (VTA/SNC), and hippocampal regions (HIPP). RESULTS: Ovariectomy downregulated AR in the hypothalamic satiety centers and hippocampus. It prevented or attenuated the stress-specific upregulation of AR in these regions. The main difference in stress response between non-ovariectomized and ovariectomized females was in PR level. Ovariectomized ones had increased PR level in the HTH, VTA, and HIPP. Combination of stressors pushed the hypothalamic satiety centers toward the rise of ObR and susceptibility to leptin resistance. When exposed to combined stressors, the HIPP, SNC and piriform cortex upregulated the expression of IR-α and the possibility to develop insulin resistance. CONCLUSION: Ovariectomy exacerbates the effect of chronic stress by preventing gonadal receptor-specific stress response reflected in the up-regulation of AR in the satiety and hippocampal regions, while stress after ovariectomy usually raises PR. The final outcome of inadequate stress response is reflected in the upregulation of ObR in the satiety centers and IR-α in the regions susceptible to early neurodegeneration. We discussed the possibility of stress induced metabolic changes under conditions of hormone deprivation.


Assuntos
Leptina/metabolismo , Ovariectomia , Estresse Psicológico , Animais , Feminino , Hipocampo/metabolismo , Resistência à Insulina , Ratos , Ratos Sprague-Dawley , Receptores para Leptina/metabolismo
9.
Croat Med J ; 56(2): 104-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25891869

RESUMO

AIM: To compare cardiometabolic risk-related biochemical markers and sexual hormone and leptin receptors in the adrenal gland of rat males, non-ovariectomized females (NON-OVX), and ovariectomized females (OVX) under chronic stress. METHODS: Forty six 16-week-old Sprague-Dawley rats were divided into male, NON-OVX, and OVX group and exposed to chronic stress or kept as controls. Weight, glucose tolerance test (GTT), serum concentration of glucose, and cholesterol were measured. Adrenal glands were collected at the age of 28 weeks and immunohistochemical staining against estrogen beta (ERß), progesterone (PR), testosterone (AR), and leptin (Ob-R) receptors was performed. RESULTS: Body weight, GTT, serum cholesterol, and glucose changed in response to stress as expected and validated the applied stress protocol. Stressed males had significantly higher number of ERß receptors in comparison to control group (P = 0.028). Stressed NON-OVX group had significantly decreased AR in comparison to control group (P = 0.007). The levels of PR did not change in any consistent pattern. The levels of Ob-R increased upon stress in all groups, but the significant difference was reached only in the case of stressed OVX group compared to control (P = 0.033). CONCLUSION: Chronic stress response was sex specific. OVX females had similar biochemical parameters as males. Changes upon chronic stress in adrenal gland were related to an increase in testosterone receptor in females and decrease in estrogen receptor in males.


Assuntos
Glândulas Suprarrenais/metabolismo , Receptor beta de Estrogênio/metabolismo , Receptores Androgênicos/metabolismo , Receptores para Leptina/metabolismo , Receptores de Progesterona/metabolismo , Estresse Fisiológico , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Colesterol/sangue , Feminino , Teste de Tolerância a Glucose , Imuno-Histoquímica , Masculino , Ovariectomia , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
10.
Coll Antropol ; 39(2): 385-92, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26753455

RESUMO

To explore sex differences in cardiovascular function under stress, we analyzed plasma levels of glucose, C-reactive protein (CRP), uric acid and cholesterol in male, female and ovariectomized rats under acute and chronic stress. Glucose tolerance test (GTT) was performed in all rats before any stress was performed, as well as later in the chronic stress experiment. GTT in control animals showed the same trend as in chronically stressed. Male rats showed the highest plasma level of glucose and uric acid upon acute stress in comparison between the other two groups. Ovariectomized rats reached the highest concentration of plasma cholesterol during acute and chronic stress, respectively and also the highest plasma concentration of CRP during acute stress. Stress, as a risk factor of metabolic syndrome, affected biochemical parameters in males upon acute more than upon chronic stress, but the opposite was observed in female rats. Gender differences supported by ovariectomy show that stress managing could be affected by sexual hormones.


Assuntos
Glicemia/metabolismo , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/etiologia , Colesterol/sangue , Ovariectomia , Estresse Psicológico/complicações , Ácido Úrico/sangue , Animais , Doenças Cardiovasculares/sangue , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Risco , Caracteres Sexuais
11.
Croat Med J ; 55(3): 218-27, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24891280

RESUMO

AIM: To estimate the impact of high fat diet and estrogen deficiency on the oxidative and antioxidative status in the liver of the ovariectomized rats, as well as the ameliorating effect of physical activity or consumption of functional food containing bioactive compounds with antioxidative properties on oxidative damage in the rat liver. METHODS: The study was conducted from November 2012 to April 2013. Liver oxidative damage was determined by lipid peroxidation levels expressed in terms of thiobarbituric acid reactive substances (TBARS), while liver antioxidative status was determined by catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) activities, and glutathione (GSH) content. Sixty-four female Wistar rats were divided into eight groups: sham operated and ovariectomized rats that received either standard diet, high fat diet, or high fat diet supplemented with cereal selenized onion biscuits or high fat diet together with introduction of physical exercise of animals. RESULTS: High fat diet significantly increased TBARS content in the liver compared to standard diet (P=0.032, P=0.030). Furthermore, high fat diet decreased the activities of CAT, GR, and GST, as well as the content of GSH (P<0.050). GPx activity remained unchanged in all groups. Physical activity and consumption of cereal selenized onion biscuits showed protective effect through increased GR activity in sham operated rats (P=0.026, P=0.009), while in ovariectomized group CAT activity was increased (P=0.018) in rats that received cereal selenized onion biscuits. CONCLUSION: Feeding rats with high fat diet was accompanied by decreased antioxidative enzyme activities and increased lipid peroxidation. Bioactive compounds of cereal selenized onion biscuits showed potential to attenuate the adverse impact of high fat diet on antioxidative status.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Atividade Motora/fisiologia , Ovariectomia , Ovário/fisiologia , Oxirredutases/metabolismo , Animais , Antioxidantes/metabolismo , Feminino , Peroxidação de Lipídeos , Fígado/enzimologia , Oxirredução , Condicionamento Físico Animal , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
12.
Croat Med J ; 55(3): 228-38, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24891281

RESUMO

AIM: To evaluate in a rat animal model whether ovariectomy, high fat diet (HFD), and physical activity in the form of running affect leptin receptor (Ob-R) distribution in the brain and white fat tissue compared to sham (Sh) surgery, standard diet (StD), and sedentary conditions. METHODS: The study included 48 female laboratory Wistar rats (4 weeks old). Following eight weeks of feeding with standard or HFD, rats were subjected to either OVX or Sh surgery. After surgery, all animals continued StD or HFD for the next 10 weeks. During these 10 weeks, ovariectomy and Sh groups were subjected to physical activity or sedentary conditions. Free-floating immunohistochemistry and Western blot methods were carried out to detect Ob-R in the brain and adipose tissue. RESULTS: StD-ovariectomy-sedentary group had a greater number of Ob-R positive neurons in lateral hypothalamic nuclei than StD-Sh-sedentary group. There was no difference in Ob-R positive neurons in arcuatus nuclei between all groups. Ob-R distribution in the barrel cortex was higher in HFD group than in StD group. Ob-R presence in perirenal and subcutaneous fat was decreased in StD-ovariectomy group. CONCLUSION: HFD and ovariectomy increased Ob-R distribution in lateral hypothalamic nuclei, but there was no effect on arcuatus nuclei. Our results are first to suggest that HFD, ovariectomy, and physical activity affect Ob-R distribution in the barrel cortex, which might be correlated with the role of Ob-R in election of food in rats.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Atividade Motora/fisiologia , Ovariectomia , Receptores para Leptina/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Western Blotting , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Ovário/fisiologia , Ratos , Ratos Wistar
13.
Croat Med J ; 55(3): 239-49, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24891282

RESUMO

AIM: To assess how ovarian-derived sex hormones (in particular progesterone) modify the effects of single acute stress on the mechanical and biochemical properties of left ventricular cardiomyocytes in the rat. METHODS: Non-ovariectomized (control, n=8) and ovariectomized (OVX, n=8) female rats were kept under normal conditions or were exposed to stress (control-S, n=8 and OVX-S, n=8). Serum progesterone levels were measured using a chemiluminescent immunoassay. Left ventricular myocardial samples were used for isometric force measurements and protein analysis. Ca(2+)-dependent active force (Factive), Ca(2+)-independent passive force (Fpassive), and Ca(2+)-sensitivity of force production were determined in single, mechanically isolated, permeabilized cardiomyocytes. Stress- and ovariectomy-induced alterations in myofilament proteins (myosin-binding protein C [MyBP-C], troponin I [TnI], and titin) were analyzed by sodium dodecyl sulfate gel electrophoresis using protein and phosphoprotein stainings. RESULTS: Serum progesterone levels were significantly increased in stressed rats (control-S, 35.6±4.8 ng/mL and OVX-S, 21.9±4.0 ng/mL) compared to control (10±2.9 ng/mL) and OVX (2.8±0.5 ng/mL) groups. Factive was higher in the OVX groups (OVX, 25.9±3.4 kN/m(2) and OVX-S, 26.3±3.0 kN/m(2)) than in control groups (control, 16.4±1.2 kN/m(2) and control-S, 14.4±0.9 kN/m(2)). Regarding the potential molecular mechanisms, Factive correlated with MyBP-C phosphorylation, while myofilament Ca(2+)-sensitivity inversely correlated with serum progesterone levels when the mean values were plotted for all animal groups. Fpassive was unaffected by any treatment. CONCLUSION: Stress increases ovary-independent synthesis and release of progesterone, which may regulate Ca(2+)-sensitivity of force production in left ventricular cardiomyocytes. Stress and female hormones differently alter Ca(2+)-dependent cardiomyocyte contractile force production, which may have pathophysiological importance during stress conditions affecting postmenopausal women.


Assuntos
Estrogênios/sangue , Miócitos Cardíacos/fisiologia , Ovariectomia , Ovário/fisiologia , Progesterona/sangue , Estresse Fisiológico , Animais , Proteínas de Transporte/metabolismo , Eletroforese em Gel de Poliacrilamida , Feminino , Ventrículos do Coração , Humanos , Medições Luminescentes , Fosforilação , Ratos , Ratos Sprague-Dawley , Troponina I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...